
CVISION TECHNOLOGIES

PdfCompressor 6.0
Developer’s SDK

Copyright

Technologies

PdfCompressor 6.0 Developer’s SDK Guide

PdfCompressor Developer’s SDK © 1999-2013

CVISION TECHNOLOGIES, INC.

CVista, CVISION, and the CVISION logo are registered trademarks of CVISION Technologies, Inc.

Portions of this product Copyright © 1996-2013 The FreeType Project. All rights reserved.

Portions of this product Copyright © 1998-2013 Nuance Communications,, Inc.

Portions of this product Copyright © 1996-2013 Glyph & Cog, LLC

All other trademarks and product names used in this documentation are trademarks of their
respective companies and have been appropriately capitalized.

Table of Contents

THE PDFCOMPRESSOR 6.0 SDK .. 1

OVERVIEW .. 1
64-BIT SUPPORT .. 1
COMPILING AND LINKING IN C++ .. 2

Compiling your application with the APICVistaPDFWriter (or APICVistaPDFWriterMP) API 2
Compiling your application with the APICVistaPDFReader API .. 2

THE .NET WRAPPER FOR THE PDFCOMPRESSOR API .. 3
DISTRIBUTING APPLICATIONS BASED ON THE PDFCOMPRESSOR API ... 3
INTEGRATING A LICENSE MECHANISM INTO YOUR APPLICATION .. 5

THE APICVISTAPDFWRITER CLASS .. 6

BACKGROUND INFORMATION ... 6
CLASS AND MEMBER DEFINITIONS ... 6
.NET IMPLEMENTATION .. 14

THE APICVISTAPDFWRITERMP CLASS .. 16

OVERVIEW .. 16
CLASS AND MEMBER DEFINITIONS ... 16
.NET IMPLEMENTATION .. 19

THE APICVISTAPDFREADER CLASS .. 20

BACKGROUND INFORMATION ... 20
Helper Data Structures and Functions .. 20
Class and Member Definitions .. 21
Initialization and access functions .. 22
PDF page control functions ... 23
PDF file functions: saving/conversion ... 24
Error functions .. 25
.NET Implementation .. 26

COMPRESSION FLAGS .. 27

COMPRESSION-RELATED OPTIONS ... 27
OUTPUT OPTIONS .. 30
DOCUMENT STRUCTURE OPTIONS ... 32
PDF-TO-PDF PROCESSING OPTIONS ... 33
OCR-RELATED OPTIONS .. 35
GENERAL IMAGE PROCESSING OPTIONS .. 39
ANNOTATIONS, DOCUMENT TAGS, AND VIEWER PREFERENCES ... 41
SECURITY OPTIONS ... 41
LOGGING OPTIONS ... 43

DECOMPRESSION FLAGS .. 44

i

ii

PdfCompressor 6.0 SDK

The PdfCompressor 6.0 Developer's SDK

Overview CVISION's PdfCompressor SDK allows PdfCompressor users to
incorporate PDF writing and OCR’ing functionality into their own custom
applications. The API is based mainly upon two classes called
APICVistaPDFWriter (see page 6) and APICVistaPDFReader (see page20).
Nearly all API functions are implemented as public member functions of
these two classes.

Interfaces for the PdfCompressor API are provided for both C++ (the
native language of the PdfCompressor engine) and .NET languages such
as C# and VB.NET. Support for .NET languages is provided via an
intermediary DLL wrapper.

64-Bit Support Two variants of the PdfCompressor SDK are available - one for 32-bit
(x86) application development and one for 64-bit (x64) application
development. If you have installed the 32-bit version of PdfCompressor,
you need to install the 32-bit version of the PdfCompressor SDK . If you
have installed the 64-bit version of PdfCompressor, you need to install
the 64-bit version of the PdfCompressor SDK . A 32-bit installation of the
PdfCompressor cannot coexist with a 64-bit installation of the
PdfCompressor SDK , and vice-versa. Also, you cannot install
PdfCompressor for both x86 and x64 on the same machine.

If you need to develop for both 32-bit and 64-bit platforms, the easiest
way to accomplish this is to install the 32-bit installations and 64-bit
installations on two separate machines. After you have developed your
application for one of those platforms, copy your project to the other
machine and build your application for the other platform using the
alternate binaries provided for that platform. However, if this presents a
problem (such as if you only have a license for one machine), CVISION
can send you just the binaries for the alternate platform. Please contact
CVISION support at support@cvisiontech.com to assist you with this
matter.

Compatibility Note In order to ensure compatibility with your application, make sure you
are running with Microsoft Visual Studio 2008 SP1 or 2010 SP1. You
may encounter compilation or runtime errors with older versions. The
PdfCompressor SDK may work with later versions of Visual Studio or
with compilers from other vendors, but compatibility is not guaranteed.

1

mailto:support@cvisiontech.com

PdfCompressor 6.0 SDK

Compiling and Linking
in C++

The files needed for integrating PdfCompressor API functionality into
your program are provided in the API subfolder of where you installed
PdfCompressor.

Compiling your application
with the
APICVistaPDFWriter
(or
APICVistaPDFWriterMP)
API

Five C++ header files are required for the PdfCompressor API. They are
located in the VC\APICVistaPDFWriter\include folder:

APICommonDefines.h
APICVistaPDFWriterUser.h
APIerrors.h
APIWriterDefines.h
interfacedefs.h

A link library is provided as well, called PdfEnc.lib . Link with this
file to resolve the symbols contained in PdfEnc.dll .

Compiling your application
with the
APICVistaPDFReader API

Five C++ header files are required for the PdfCompressor API. They are
located in the VC\APICVistaPDFReader\include folder:

APICommonDefines.h
APICVistaPDFReaderUser.h
APIerrors.h
APIReaderDefines.h
interfacedefs.h

A link library is provided as well, called PdfDec.lib . Link with this
file to resolve the symbols contained in PdfDec.dll .

Debugging Tip: To correctly run applications written using the PdfCompressor API
requires prior installation of PdfCompressor. Many of the binaries
installed by PdfCompressor will be used by the API and therefore should
be added to the same path as your project's output executable. See
Distributing Applications Based on the PdfCompressor API on page 3 for
details regarding which DLLs to copy into your project.

2

PdfCompressor 6.0 SDK

The .NET Wrapper for
the PdfCompressor
API

As mentioned above, in addition to native C++ API support, the
PdfCompressor API also offers a .NET wrapper for the API methods
provided. The wrapper provides the intermediary interfaces required to
enable a program written in a .NET language (such as C# or VB.NET) to
communicate with the API, in a file called PdfEncNET.dll.

Use of the .NET wrapper is fairly straightforward. To make use of the
APICVistaPDFWriter class, simply add a reference to the
PdfEncNET.dll in your .NET development project. The interfaces
are essentially the same as those provided by the C++ file
APICVistaPdfWriterUser.h. The namespace is called
CVision.PdfCompressor.

Several versions of PdfEncNET.dll are provided in the API
installation, corresponding to various versions of the .NET Framework
(2.0 through 4.0). They are all located in the DOTNET folder of the API
installation.

Distributing
Applications Based on
the PdfCompressor
API

In order to distribute applications linked with the PdfCompressor API,
you will need to package some of the files provided with the SDK
installation and/or the main PdfCompressor installation. These files are
listed below. Please note that wherever the word CVISTAPATH is shown,
it means the location where PdfCompressor was installed on your
development system (typically
%PROGRAMFILES%\CVision\PdfCompressor 6.0).

Note:

DO NOT DISTRIBUTE ANY SOURCE OR LIBRARY STUB FILES (*.h, *.cpp,
*.lib, *.cs, etc.) PROVIDED BY THE PDFCOMPRESSOR SDK . THESE FILES
ARE FOR COMPILATION AND LINKING PURPOSES ONLY. DISTRIBUTION
OF THESE FILES CONSTITUTES A VIOLATION OF YOUR LICENSE
AGREEMENT WITH CVISION TECHNOLOGIES.

3

PdfCompressor 6.0 SDK

*Files required for integrating the APICVistaPDFWriter (or APICVistaPDFWriterMP) API
Path Files Needed Comment
CVISTAPATH PdfEnc.dll

JJpxWriter.dll
cximagecrt.dll

Main compression engine files. Make sure that they will be
installed somewhere on the user's system where the
operating system will find them (preferably your main
program folder).

CVISTAPATH libeay32.dll Needed for the 64-bit version only.
CVISTAPATH\OCR (all) Add these files if your application will create searchable PDFs.

(Availability of this feature depends on your license
agreement.) Also see below regarding our OCR Language
Pack.*

CVISTAPATH\API\
DOTNET

PdfEncNET.dll Add this file if your application is developed in .NET . It should
reside in the same path as where you install PdfEnc.dll. Note
that there are several subfolders here. Include the version of
PdfEncNET.dll that corresponds to your target .NET
framework.

 • If you are distributing an application that requires OCR support
for languages other than English, you need to download and
install the CVISION OCR Language Pack. You can obtain it from
the downloads page on our website at
http://www.cvisiontech.com/download_main.html.

• If you are packaging an application for distribution, also make

sure your deployment package includes the appropriate versions
of any Visual C++ or .NET redistributables that are necessary to
support your application.

Files required for integrating the APICVistaPDFReader API
Path Files Needed Comment
CVISTAPATH PdfDec.dll

JJpxWriter.dll
cximagecrt.dll
dtlstats.dll

Main decompression engine files. Make sure that they will
be installed somewhere on the user's system where the
operating system will find them (preferably your main
program folder).

CVISTAPATH\API\
DOTNET

PdfDecNET.dll Add this file if your application is developed in .NET . It
should reside in the same path as where you install
PdfDec.dll. Note that there are several subfolders here.
Include the version of PdfDecNET.dll that corresponds to
your target .NET framework.

4

http://www.cvisiontech.com/download_main.html

PdfCompressor 6.0 SDK

Integrating a license
mechanism into your
application

The files PdfEnc.dll and PdfDec.dll have security mechanisms built
into it that check for the existence of an electronic license before the
software will run. While you are developing your application initially, you
may use the versions of PdfEnc.dll and PdfDec.dll included with
the version of PdfCompressor upon which you installed the API .

However, before you can package your software and begin distributing
it, depending on your licensing terms, you may need to swap in a special
version of these files as well as some other files, which are either
protected by a special alternative license mechanism provided by
CVISION or designed to interface with a license mechanism provided in
your own application. When you are nearing the point at which you will
be packaging your application, please contact CVISION to work out these
details.

5

PdfCompressor 6.0 SDK

 The APICVistaPDFWriter Class

This section explains the conventions and terminology used later on in
the documentation.

Background
Information

DIB - An acronym for Device-Independent Bitmap, this is the raw
Windows bitmap format used to exchange image data within the
PdfCompressor API. The format of a DIB file is equivalent to that of a
BMP file without the BITMAPFILEHEADER section. Additional information
on the DIB format can be found at the Microsoft Developer Network
(MSDN) web site.

The documentation refers to a byte data type. byte is a C++ typedef,
defined as:

typedef unsigned char byte;

All functions described below which have a bool return type
representing a success code return true upon success and false upon
failure.

Class and Member
Definitions

This section documents the APICVistaPDFWriter class and its member
functions.

 Data Structure
C++ Data Type Description
class APICVistaPDFWriter The structure encapsulating the API functions for PDF file creation

6

http://msdn.microsoft.com/
http://msdn.microsoft.com/

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
APICVistaPDFWriter(const
APICVistaPDFWriter&);

A function declaration which prevents copy-construction

 Function
Function Signature(s) Description
void operator=(const
APICVistaPDFWriter&)

A function declaration that prevents assignment

 Function
Function Signature(s) Description
APICVistaPDFWriter() A default constructor

 Function
Function Signature(s) Description
~APICVistaPDFWriter() The destructor

 Function
Function Signature(s) Description
bool HasValidLicense(__int64
flagsToCheck)

Check whether a valid PDF writer license exists.

 Input
Param # Param Name Description
1 flagsToCheck Flags to check for specific rights. Pass 0 to this parameter unless

otherwise instructed.
 Returns
C++ Data Type Description
bool Success status; a value of true means that the license is valid, while

false means that the license is not valid. Note that if the license
installed for the software does not include API rights, a value of false
will be returned. If the license is found to be invalid, the
GetLastError() function can be called to determine the reason for the
failure (see below).

7

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool Open(const char* PDFFile,
const char* options="")

bool Open(const wchar_t*
PDFFile, const wchar_t*
options=L"")

Open a PDF filename for writing, optionally supplying a string of flags
affecting the conversion options.

 Input
Parameter # Parameter Name Description
1 PDFFile The filename the PDF file should be written to.
2 options Conversion options, , same as the command-line flags that would be

used as parameters to CVCompress.exe. See below for a full
description of these flags.

 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

 Function
Function Signature(s) Description
bool OpenMemory(byte *
pTrMemory, size_t sizeLimit,
long * pFinalSize, const char*
options="")

Open a PDF filename for writing, optionally supplying a string of flags
affecting the conversion options.

 Input
Param # Param Name Description
1 pTrMemory The buffer in memory for writing the PDF file
2 sizeLimit Maximum number of bytes CVWriter can use in pTrMemory buffer
3 pFinalSize The final length of the output PDF file is stored in this variable after

Close() function is called.
4 options Conversion options, , same as the command-line flags that would be

used as parameters to CVCompress.exe. See below for a full
description of these flags.

 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

8

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool AddFile(const char*
fileName, const char* cOptions)

bool AddFile(const wchar_t*
fileName, const wchar_t*
cOptions)

Add a PDF or image file (such as TIFF, JPEG, or BMP) to the current
open PDF file. Two versions of this function are available - one that
uses ASCII strings and one that uses Unicode strings.

 Input
Param # Param Name Description
1 fileName The name of the file that should be converted and added to the

current open PDF file
2 cOptions Optionally specifies alternate options (flags) for this input file, to

amend or override the document-level conversion options specified
in the Open() API function. At this time, only compression-related or
OCR-related options can be specified here.

 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature(s) Description
bool AddPage(const byte* pDIB,
const char* cOptions)

Add an image DIB to the currently open PDF file. Note that this
method cannot add an image in stream mode. To do that, you should
use the AddFile method above.

 Input
Param # Param Name Description
1 pDIB A handle to the DIB page that should be added the current PDF file.
2 cOptions Optionally specifies alternate options (flags) for this input page, to

amend or override the document-level conversion options specified
in the Open() API function. At this time, only compression-related or
OCR-related options can be specified here.

 Returns
C++ Data Type Description
bool Success code

9

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool AddMemoryStream(const byte*
pTrMemory, long memsize, const
char* streamtype)

bool AddMemoryStream(const byte*
pTrMemory, long memsize, const
char* streamtype, const char*
cOptions)

Add a PDF, TIFF, JPEG, or BMP stored in a memory stream to
the current open PDF file. Two version of this method are
available, one of them containing an extra parameter for
specifying the desired processing flags if they differ from what
was specified in OpenMemory().

 Input
Param # Param Name Description
1 pTrMemory A memory pointer pointing to a TIFF, JPEG, or BMP image stored in

memory.
2 memsize Size of the pTrMemory buffer.
3 streamtype String representing the file extension normally attributed to the

image type stored in pTrMemory, e.g. pdf, tif, jpg, or bmp.
4 cOptions Optionally specifies alternate options (flags) for this memory stream,

to amend or override the document-level conversion options
specified in the Open() function. At this time, only compression-
related or OCR-related options can be specified here.

 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature(s) Description
int NumPages() Number of pages written so far (non-stream mode only)
 Returns
C++ Data Type Description
int Number of pages

 Function
Function Signature(s) Description
bool Close() Close an open instance of an APICVistaPDFWriter object.
 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

10

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool IsOpen() Checks whether the APICVistaPDFWriter object is open for writing,

i.e., whether the Open() method has already been called.
 Returns
C++ Data Type Description
bool Returns true if file is open; false otherwise.

 Function
Function Signature(s) Description
int GetLastError() Get the last error set by the PDF writer
 Returns
C++ Data Type Description
int Integer error code; see APIErrors.h for list of possible values

 Function
Function Signature(s) Description
const char* GetErrorString(int
errorCode)

const wchar_t*
GetErrorStringW(int errorCode)

Get description of an error for a give error code. Both ASCII and
Unicode versions of this function are available.

 Input
Param # Param Name Description
1 errorCode An integer error code, obtained by calling GetLastError()
 Returns
C++ Data Type Description
const char* / const wchar_t* A pointer to the string describing the error code

 Function
Function Signature(s) Description
static const char*
GetSupportedExtensions()

static const wchar_t*
GetSupportedExtensionsW()

Get list of supported input file extensions as a Unicode string. Both
ASCII and Unicode versions of this function are available.

 Returns
C++ Data Type Description
static const char* /
static const wchar_t*

List of supported extensions in the following form (all lowercase):
".ext1|.ext2|.ext3|...|.extn|"

11

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool GetOutputFileName(char*
fileName, int arrayLength)

bool
GetOutputFileName(wchar_t*
fileName, int arrayLength)

Get the final filename of the output PDF file.

Both ASCII and Unicode versions of this function are available.

 Input
Param # Param Name Description
1 fileName Buffer that will contain the final output filename.
2 arrayLength Length of the supplied fileName buffer.
 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature(s) Description
static int NumInputPages(char*
fileName, const char* ownerPW,
const char* userPW)

static int NumInputPages
(wchar_t* fileName, const char*
ownerPW, const char* userPW)

Get the number of pages in the specified input file. Both ASCII and
Unicode versions of this function are available.

 Input
Param # Param Name Description
1 fileName Name of the input file
2 ownerPW Owner password for the file. Pass NULL if none is used.
3 userPW User password for the file. Pass NULL if none is used.
 Returns
C++ Data Type Description
int Number of pages

12

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
static bool GetPageDib(const
char* fileName, unsigned
char*& pDIB, int pageNum)

static bool GetPageDib(const
wchar_t* fileName, unsigned
char*& pDIB, int pageNum)

Get the DIB image for a given page in the specified file. Both ASCII
and Unicode versions of this function are available.

 Input
Param # Param Name Description
1 fileName Name of the input file
2 pDIB Buffer that gets the DIB
3 pageNum Page number to get
 Returns
C++ Data Type Description
bool Success code

Function
Function Signature(s) Description
int NumProcessedPages() Get the number of pages written to the output file. Note that this

function will not return the correct value until the Close() function is
called.

 Returns
C++ Data Type Description
int Number of pages processed

Function
Function Signature(s) Description
int GetFinalSize() Gets the final size of the output PDF file. Note that this function will

not return the correct value until the Close() function is called.
 Returns
C++ Data Type Description
int Final size of output file

13

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool ExtractBookmarks(const
wchar_t* fileName)

Extracts the bookmarks from the current file.

 Input
Param # Param Name Description
1 fileName Name of the file to which the bookmark data should be saved
 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature(s) Description
static bool DeleteMem(unsigned
char*& ptr)

Deletes the memory allocated for a DIB by one of the other API
functions. NOTE: The parameter's data type has changed since
version 5.0.

 Input
Param # Param Name Description
1 ptr Pointer to an allocated block of memory
 Returns
C++ Data Type Description
bool Success code

.NET Implementation The function signatures provided by the .NET version of the
APICVistaPDFWriter class for languages such as C# and VB.NET are
quite similar to those provided for C++. The specifications are below.

Namespace: CVision.PdfCompressor

Class: APICVistaPDFWriterNET

14

PdfCompressor 6.0 SDK

Member Functions: Function Signature Notes
APICVistaPDFWriterNET()
~APICVistaPDFWriterNET()
bool AddFile(string FileName, string
Options)

bool AddMemoryStream(byte[]
pTrMemory, int Memsize, string
Streamtype, string Options)

bool AddPage(System.Drawing.Bitmap
oBitmap, string Options)

Takes a .NET Bitmap
instead of a DIB

bool Close()
override void Dispose()
bool ExtractBookmarks(string
fileName)

string GetErrorString(int errorCode)
uint GetFinalSize()
int GetLastError()
string GetOutputFileName()
static System.Drawing.Bitmap
GetPageDib(string FileName, int
pageNum)

Returns a .NET Image
instead of a DIB

static string GetSupportedExtensions() Function is static
bool HasValidLicense(long
flagsToCheck)

bool IsOpen()
static int NumInputPages(string
FileName)

int NumPages()
int NumProcessedPages()
bool Open(string FileName, string
Options)

bool OpenMemory(byte[] pTrMemory,
int SizeLimit, string Options)

15

PdfCompressor 6.0 SDK

 The APICVistaPDFWriterMP Class

Overview The PdfCompressor API now provides a special version of the
APICVistaWriter class that enables fast merging. Under the original
APICVistaWriter class, merging files was always forced to be a sequential
operation, and this prevented users from taking advantage of their
processing power on machines with multiple cores. A new version of this
class, called APICVistaWriterMP, processes files asynchronously and
merges the files in the correct order into the final output filename
specified.

To take advantage of multiprocessing when you are not merging input
files, you do not need the APICVistaWriterMP class. Rather, simply
spawn a separate thread for each file you need to process, and create a
separate APICVistaWriter object in each thread.

Class and Member
Definitions

This section documents the APICVistaPDFWriterMP class and its
member functions.

At this time, the APICVistaWriterMP class provides only a basic subset of
the functions provided by the original APICVistaWriter class. Some of the
functions provided in the original APICVistaWriter class only can be
invoked by creating a separate APICVistaWriter object.

 Data Structure
C++ Data Type Description
class APICVistaPDFWriterMP The structure encapsulating the API functions for PDF file creation

 Function
Function Signature(s) Description
APICVistaPDFWriterMP() The default constructor

 Function
Function Signature(s) Description
~APICVistaPDFWriterMP() The destructor

16

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
bool Open(const wchar_t*
PDFFile, const wchar_t*
options="")

Open a PDF filename for writing, optionally supplying a string of flags
affecting the conversion settings.

 Input
Parameter # Parameter Name Description
1 PDFFile The filename the PDF file should be written to.
2 options Conversion options, same as the command-line. These options only

affect the final merging of files, and therefore only annotation-
related flags can be used here. Compression and OCR flags should
be set in the call to the AddFile() function.

 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

 Function
Function Signature(s) Description
bool AddFile(const wchar_t*
fileName, const wchar_t*
cOptions)

Add a PDF or image file (such as TIFF, JPEG, or BMP) to the current
open PDF file.

 Input
Parameter # Parameter

Name
Description

1 fileName The name of the file that should be converted and added to the
current open PDF file

2 cOptions Specify the flags you would like to use to process the input file. In
MP mode, this will usually be the place to specify compression flags
and not in the Open method. These options will affect only the
specified input file. For a description of the flags, please check
below in the appropriate section.

 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature(s) Description
bool Close() Close an open instance of an APICVistaPDFWriterMP object.
 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

17

PdfCompressor 6.0 SDK

 Function
Function Signature(s) Description
int GetLastError() Get the last error set by the PDF writer
 Returns
C++ Data Type Description
int Integer error code; see APIErrors.h for list of possible values

 Function
Function Signature(s) Description
void SetLogFilePath(const
wchar_t* path)

Set the path for the log file.

 Input
Parameter # Parameter Name Description
1 path The fully-qualified path to the log file
 Returns
C++ Data Type Description
void

 Function
Function Signature(s) Description
void LogError(const wchar_t*
cFormat, ...)

Write a custom message to the log file.

 Input
Parameter # Parameter Name Description
1 cFormat The format string to output, conforming to formatting specifications

used by C++ library functions such as printf().
2, ... (n/a) Any parameters used by the format string
 Returns
C++ Data Type Description
void

18

PdfCompressor 6.0 SDK

.NET Implementation The function signatures provided by the .NET version of the
APICVistaPDFWriterMP class for languages such as C# and VB.NET are
quite similar to those provided for C++. The specifications are below.

Namespace: CVision.PdfCompressor

Class: APICVistaPDFWriterMP_NET

Member Functions: Function Signature Notes
APICVistaPDFWriterMP_NET()
~APICVistaPDFWriterMP_NET()
bool AddFile(string FileName,
string Options)

bool Close()
override void Dispose()
int GetLastError()
bool Open(string FileName, string
Options)

void SetLogFilePath(string
pathString)

In the .NET version of the API,
you can set the log file path, but
you cannot output a custom
message to the log file.

19

PdfCompressor 6.0 SDK

 The APICVistaPDFReader Class

Background
Information

This section explains the conventions and terminology used later on in
the documentation.

• DIB - An acronym for Device-Independent Bitmap, this is the raw
Windows bitmap format used to exchange image data within the
CVista API. The format of a DIB file is equivalent to that of a BMP
file without the BITMAPFILEHEADER section. Additional
information on the DIB format can be found at the Microsoft
Developer Network (MSDN) website.

• The documentation refers to a byte data type. byte is defined as:
 typedef unsigned char byte;

• All memory dynamically allocated for an APICVistaPDFReader
object must be deleted with the CVPDFReaderDelete function
when the client is done with it.

• All functions described below which have a bool return type
representing a success code return true upon success and false
upon failure.

Helper Data Structures and
Functions

This section documents supporting data structures and functions used in
conjunction with APICVistaPDFReader objects.

 Data Structure
C++ Data Type Description
struct InfoData_t Used to communicate document property fields a PDF file.
 Data Structure Members
C++ Data Type Name Description
char* Title The PDF file’s title.
char* Author The name of the person who created the pdf file.
char* Subject The subject of the pdf file
char* KeyWords Keywords associated with the PDF file
char* Creator The name of the original application that created this pdf file
char* Producer The name of the application that modified or converted this pdf

file
char* CreationDate The date and time the pdf file was created.

//YYYYMMDDHHmmSSOHH'mm' format
char* ModifiedDate The date and time the document was most recently modified.

//YYYYMMDDHHmmSSOHH'mm' format

Note: Any document fields that are not present in the current
document are set to NULL. For more information on the document
fields see Entries in the document information dictionary section of a
PDF Reference manual.

20

http://msdn.microsoft.com/
http://msdn.microsoft.com/
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CCVision%5CPdfCompressor%205.0%5CAPI%5Cdocs%5CAPI_Toolkit_5_0.chm::/Documents/api_pdfreader_1.htm%23API
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CCVision%5CPdfCompressor%205.0%5CAPI%5Cdocs%5CAPI_Toolkit_5_0.chm::/Documents/api_pdfreader_1.htm%23CVPDFReaderDelete
http://partners.adobe.com/public/developer/pdf/index_reference.html

PdfCompressor 6.0 SDK

 Data Structure
C++ Data Type Description
struct ImageInfo_t Structure to store information related to an image embedded

in a pdf file.
 Data Structure Members
C++ Data Type Name Description
int iWidth Width of the image
int iHeight Height of the image
int iNumComponents Number of color components used by the image
int iBitsPerComponent Number of bits used by each component
int iBitsPerPixel Number of bits used by each pixel of the image
int iXResolution Horizontal resolution of the image
int iYResolution Vertical resolution of the image
int iFilter Compression filter used by the image
int iColorSpace Colorspace used by the image
char* cFilterParams Any parameters related to compression filter used by the

image

 Function
Function Signature Description
void CVPDFReaderDelete(void* ptr) Delete any memory dynamically allocated by APICVistaPDFReader

API
 Input
Param # Param Name Description
1 void* A pointer to the memory dynamically allocated by

APICVistaPDFReader API

Class and Member
Definitions

This section documents the APICVistaPDFReader class and its functions.

 Data Structure
C++ Data Type Description
class APICVistaPDFReader The structure encapsulating the API functions for PDF

manipulation

21

PdfCompressor 6.0 SDK

 Initialization and access
functions

 Function
Function Signature Description
bool HasValidLicense() Check whether a valid PDF reader license exists
 Returns
C++ Data Type Description
bool Success code; see APIErrors.h for list of possible values

 Function
Function Signature Description
bool Open(const char* fname,const char* options="")

bool Open(const wchar_t* fname, const wchar_t* options=L"")

Open a PDF filename for writing,
optionally supplying a string of flags
affecting the conversion settings.

 Input
Param # Param Name Description
1 fname A pointer to a C-style string representing the name of the file to

be opened
2 options Optional decompression flags, same as the command-line flags

that would be used as parameters to CVDecompress.exe. See
below for a full description of these flags.

 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature Description
bool Close() Close the current PDF file
 Returns
C++ Data Type Description
bool Success code

Note: This function resets all internal data structures. After this call
the object instance is ready to have its Open() functions called again
with a different file.

22

PdfCompressor 6.0 SDK

 Function
Function Signature Description
bool IsOpen() Get the APICVistaPDFReader object status
 Returns
C++ Data Type Description
bool Returns true if a pdf files is open.

 PDF page control
functions

 Function
Function Signature Description
int NumPages() Get the total number of pages in the current PDF file
 Returns
C++ Data Type Description
int the total number of pages

 Function
Function Signature Description
int CurPage() Get the current page in the PDF file
 Returns
C++ Data Type Description
int The page in the PDF file that the APICVistaPDFReader object is

pointing to

 Function
Function Signature Description
bool Next() Advance to the next page in the PDF file
 Returns
C++ Data Type Description
bool Success code

23

PdfCompressor 6.0 SDK

PDF file functions:
saving/conversion

 Function
Function Signature Description
bool SaveToFile(const char*
outFile, const char* opt)

bool SaveToFile(const wchar_t*
outFile, const wchar_t* opt)

Save the PDF to a disk file. You can save to any of the formats
indicated by the GetSupportedExtensions() function (see below),
such as PDF, BMP, JPG or TIFF format. The file extension of the
specified filename determines the type of output file.
This function is available in both ASCII and Unicode variations.

 Input
Param # Param Name Description
1 outFile Filename that the file should be saved to
2 opt Reserved optional parameter. Set it to NULL.
 Returns
C++ Data Type Description
bool Success code

 Function
Function Signature Description
bool SavePageToFile(const char*
outFile, const char* opt)

bool SavePageToFile(const
wchar_t* outFile, const wchar_t*
opt)

Save the current PDF page to a disk file. You can save to any of
the formats indicated by the GetSupportedExtensions() function
(see below), such as PDF, BMP, JPG, or TIFF format. The file
extension of the specified filename determines the type of
output file.
This function is available in both ASCII and Unicode variations.

 Input
Param # Param Name Description
1 outFile A pointer to the filename the file should be saved to
2 opt Reserved optional parameter. Set it to NULL.
 Returns
C++ Data Type Description
bool Success code

24

PdfCompressor 6.0 SDK

 Function
Function Signature Description
static const char*
GetSupportedExtensions()

static const wchar_t*
GetSupportedExtensionsW()

Returns supported "SavetTo" file format extensions in the form
(all lowercase) ".ext1|.ext2|.ext3|...|.extn|".
GetSupportedExtensionsW() is the Unicode version of this
function.

 Returns
C++ Data Type Description
static const char* A pointer to format extension list string.

Error functions

 Function
Function Signature Description
int GetLastError() Get the value of the last error
 Returns
C++ Data Type Description
int The integer value of the error

 Function
Function Signature Description
const char* GetErrorString(int
errCode)

const wchar_t* GetErrorString(int
errCode)

Get the string value of the error code.
This function is available in ASCII and Unicode variations.

 Input
Param # Param Name Description
2 options Optional decompression flags. See the appendix in the main

PdfCompressor documentation for more information.
 Returns
C++ Data Type Description
const char* A pointer to the error's description

25

PdfCompressor 6.0 SDK

.NET Implementation The function signatures provided by the .NET version of the
APICVistaPDFReader class for languages such as C# and VB.NET
are quite similar to those provided for C++. The specifications are below.

Namespace CVision.PdfCompressor

Class APICVistaPDFReaderNET

Member Functions

Function Signature Notes
APICVistaPDFReaderNET()
~APICVistaPDFReaderNET()
bool Close()
int CurPage()
bool GetDocInfoFields(InfoDataNET oDocInfo) InfoDataNET object has same fields as

struct InfoData_t from C++
System.Drawing.Image GetImageBitmap(int
iImageNumber)

Equivalent of GetImageDib() function, but
returns a .NET image instead of a DIB

bool GetImageInfo(int iImageNumber, ImageInfoNET
oImageIn)

ImageInfoNET object has same fields as
struct ImageInfo_t from C++

MemoryStream GetImageStream(int iImageNumber)
int GetLastError()
System.Drawing.Image GetPageBitmap(string Options) Equivalent of GetPageDib() function, but

returns a .NET image instead of a DIB
bool GoToPage()
bool HasValidLicense()
bool IsOpen()
bool IsPageImageOnly() Check if current page of the open

document is an Image-Only page. Note
that if you check a pdf file that has more
than one stream, it will automatically
return false.

bool Next()
int NumImages()
int NumPages()
bool Open(string FileName, string Options)
bool Prev()
bool SavePageToFile(string OutFileName)
bool SaveToFile(string OutFileName)

26

PdfCompressor 6.0 SDK

Compression Flags
The following is the full list of flags used to specify the various desired options for use with functions in
the APICVistaPDFWriter API, such as Open() and AddFile(). These are the same flags as the ones that
would be used in conjunction with CVCompress.exe. The groupings correspond roughly to the options
pages that appear in the PdfCompressor Wizard GUI.

Compression-Related Options

Option/Flag Description

-acroVersion
<val>

Specifies the minimum version of Adobe Acrobat and Adobe Reader with
which the output PDF file will be compatible. Setting this version to a
higher value enables you to take advantage of more features, but this
comes at the cost of being incompatible with earlier version of Adobe
Reader. Setting acroVersion to 5 or even 6 should generally be safe
unless you know that you have some users with very old versions of
Adobe Reader that can't be upgraded readily.
The main features added to Acrobat 5 were JBIG2 bitonal compression
and enhanced security options. The main feature added to Acrobat 6
was JPEG2000 compression.
Note that a special version value of 128 specifies PDF/A compatibility
mode.

-minCompRatio
<val> [pdfonly]

Specifies a minimum compression ratio. If the output file size is more
than
val
times the input file size, the output file is discarded and the input file is
copied in its place, if applicable. If the pdfonly keyword is added after
the value, the minimum ratio criterion will be applied only when the
input file is in PDF format.

-m <mode> When running in perceptually lossless mode (the default), this flag
determines the type of symbolic matching. Mode '0' is faster but
generates larger files. Mode '1' provides the best compression
rates. Mode '2' is slower and is included for those who prefer to use our
4.0 matcher. Mode '1' is recommended, and is the default if no mode is
specified.

-lossless[<mode>] Directive to compress images in lossless mode. This mode provides a
lower level of compression and is therefore not recommended unless
you absolutely need a pixel-for-pixel replica of the original document
(e.g., for legal reasons). Mode '0' provides the best compression, but
runs slowly. Mode '1' uses a balance of speed and compression. Mode '2'
is faster but generates much larger files. Mode '1' is recommended, and
is the default if no mode is specified. This flag should not be used
together with the -m flag.

27

PdfCompressor 6.0 SDK

Option/Flag Description

-halftone Specifies that the halftone algorithm will be used when compressing
bitonal images in perceptually lossless mode. Halftoning is the screening
effect found in newspaper images and the like, where a bitonal
photograph approximates greyscale tones by varying the size and
placement of a fine series of dots.

-colorComptype

<val>

Specifies the compression method to be used for compressing color and
greyscale images. Currently three compression methods are supported:
DCT, JPEG2000, and Mixed Raster Content (MRC). The value of '0'
specifies DCT (JPEG) compression, the value of '1' specifies JPEG2000
compression, and the value of '2' specifies MRC compression, which is
also known as Auto-Segmentation.

-
mrcColorComptype

<val>

Specifies the compression filter to be used when compressing the
background and foreground color layers using MRC compression. The
supported MRC color compression filters are DCT (JPEG) and JPEG2000.
The DCT compression filter can be specified with the value of '0' and the
JPEG2000 compression filter can be specified with the value of '1'.

-mrcResample
<val>

If

<val>

equals 1, this specifies that MRC (auto-segmented) image streams should be
auto-resampled. If

<val>

is 0 or this entire flag is not present, the default is that MRC streams will not
be auto-resampled.

-mrcQuality <val> Controls the quality setting for the PDFs generated using MRC
compression. The MRC quality value ranges from 1 to 10. The quality
setting of 10 yields highest quality MRC PDFs and the quality setting of 1
yields lowest quality MRC PDFs. The lower quality settings generates
highly compressed PDFs and vice versa. The default value for

-mrcQuality

is 7.

-qualityc <val>
-qualityg <val>

Sets the target quality of color and greyscale images, respectively, using
the DCT (JPEG) compression filter. <val> should be an integer from 1 to
99.

Note that if auto-segmentation (MRC) is used, these flags are ignored, and
the image quality depends on -mrcQuality.

28

PdfCompressor 6.0 SDK

Option/Flag Description

-dctsc <val>
-dctsg <val>

Sets the smoothing level for color and greyscale images, respectively,
using the DCT (JPEG) compression filter. <val> should be an integer from
0 to 100, where 0 means no smoothing. (These flags can be omitted
entirely if no smoothing is desired.)

Note that if auto-segmentation (MRC) is used, these flags are ignored.

-jpxratioc <val>
-jpxratiog <val>

Sets the target JPEG2000 compression ratio for color and greyscale
images, respectively. If either of these flags is not included, DCT-based
compression will be used instead for that colorspace. The <val>
parameter should be expressed as a floating-point number between 0.0
and 1.0, using a period (".") as a decimal separator. The smaller the
value, the greater the compression, but greater compression comes at
the cost of image quality reduction.

Note that if auto-segmentation (MRC) is used, these flags are ignored, and
the image quality depends on -mrcQuality.

These two flags should NOT be used simultaneously with the DCT quality
and smoothing flags.

-cconc
-ccong

These two flags turn on compression for color and greyscale ICC-based
images, respectively. By default, ICC-based images are not compressed,
due to the risk of a slight color shift.

-inline Compress all inline images (images stored in the content stream of a PDF
file). By default, only large inline images are compressed. Compressing
small inline images often results in little compression, thereby slowing
down performance needlessly.

-huffman <val> Indicates that MMR (Huffman) encoding should be used. Using MMR
encoding can speed up time to render pages to both the screen and the
printer, but this can result in a larger file size. The

<val>

parameter should be either 1 for full MMR encoding or 2 for auto MMR
encoding.

29

PdfCompressor 6.0 SDK

Option/Flag Description

-jpxresample <val> If

<val>

equals 1, this specifies that JPEG2000 image streams should be auto-
resampled. If

<val>

is 0 or this entire flag is not present, the default is that JPEG2000 streams
will not be auto-resampled.

Output Options

Option/Flag Description

-pdfPageDim <width>
<height>

Manually specifies the output page dimensions. The width and height
(in inches) should be listed after the flag. If -pdfPageDim is not
specified (and -pdfPageSize is not specified either), then
PdfCompressor will automatically determine the output page
dimensions.

-pdfPageSize <type> Manually specifies a named page size for the output file. The <type>
parameter can be one of the following:

letter
legal
A4
A5
A6

If -pdfPageSize is not specified (and -pdfPageDim is not specified either),
then PdfCompressor will automatically determine the output page
dimensions.

-pdfPagePrintMargin
<val>

Specifies an optional whitespace margin for the output file, in inches.
The output image will be scaled to fit within the bounds of the
margin.

30

PdfCompressor 6.0 SDK

Option/Flag Description

-pdfARGBProfile <val> If PDF/A mode is specified (by using -acroVersion 128), this flag will
determine the RGB profile to use. The val parameter can be one of
the following:

<val>
Meaning

0
sRGB IEC61966-2.1

1
Adobe RGB (1998)

2
Apple RGB

3
ColorMatch RGB

-generateThumbnails
<mode>

Indicates that JPEG thumbnail images should be created for the
document in the same folder as the output file. The <mode>
parameter can have one of three values:

<mode>
Meaning

all
Creates a thumbnail file for each
page of the input file.

first
Creates a thumbnail file for the
first page only.

firstnonblank
Creates a thumbnail file for the
first non-blank page only.

-thumbnailsize <val> Specifies the size, in pixels, that the thumbnail files should be. The
larger dimension of the image will be scaled to this size.

31

PdfCompressor 6.0 SDK

Document Structure Options

Option/Flag Description

-linearize Causes the output files to be "web-optimized", by creating them with an
internal structure that facilitates efficient transmission and viewing of PDF
documents through a web browser. Linearized PDF files allow you to jump
directly to a given page and display it in your web-based PDF viewer, even
before the entire file is downloaded. Note that not all PDF viewers support
this functionality. The Adobe Acrobat Reader™ web browser plugin is one
viewer that does.

-thumb <val> Determines whether to keep thumbnails from the original document.

<val>

can be one of on, off, or auto. If it is set to auto, the software automatically
determines whether to keep thumbnails. New thumbnails are not created. It
should be noted, however, that Adobe Reader™ often creates thumbnails on the
fly anyway, making it appear as if the file still contains thumbnails despite their
removal.

32

PdfCompressor 6.0 SDK

PDF-to-PDF Processing Options

If the input file format is PDF, the file may contain multiple regions on each page. They may be visual
elements such as images and text streams, or they may be special elements such as bookmarks and
form objects. The compressed file can be created in one of two ways:

• Stream-based mode: In this mode, all of the individual page elements will be preserved as-is,
attempting only to compress the existing image content on the page.

• Rasterized mode: In this mode, the entire page is "flattened" before being compressed, treating
the entire page as a single scanned image. All special information such as bookmarks and forms
will be lost, and any font-based text regions will be rasterized and treated as part of the page
image.

The options below describe how to toggle between the two modes, as well as some additional flags that
apply only to rasterized mode.

Option/Flag Description

-stream Turns stream-based mode on, compressing all images within the PDF
file on a stream-by-stream basis, leaving the original structure of the
PDF intact. This option can also be used with input files that are simple
image PDFs without individual streams, and can in fact be beneficial in
that case as well. Thus, for PDF input files, this flag is recommended.
Compression of other file formats should not use this flag, however, as
it would cause a syntax error. If this flag is not specified, the PDFs will
be compressed in rasterized mode.

-pdfres <xres>
[<yres>]

If compressing PDF files in rasterization mode (i.e. the -stream flag is
NOT present), this flag manually sets the desired output resolution. If
this flag is not specified, the compression engine will attempt to
automatically determine the resolution from the input file (which is not
always a reliable procedure).

<xres>

is a value specifying the horizontal resolution and

<yres>

is a value specifying the vertical resolution. If

<yres>

is not specified explicity, it will be assumed the same as

<xres>

33

PdfCompressor 6.0 SDK

Option/Flag Description

-pdfbw
-pdfgray
-pdfcolor

In rasterized mode, using one these three flags forces the input PDF
files to be converted to a given colorspace (bitonal, greyscale, or color,
respectively) before compressing. At most, only one of these flags
should be specified. If none of these flags is specified, the software will
guess the colorspace of each page.

-kbg Used in conjunction with the

-pdfbw

flag in rasterized mode. Keeps the background layer and dithers it
separately from the foreground.

34

PdfCompressor 6.0 SDK

OCR-Related Options

Option/Flag Description

-o
[-oocr]
[-oicr]
[-obarcode]

Master switch for enabling PdfCompressor's OCR/recognition features. Must be
used in conjunction with at least one of the optional flags:

-oocr Turns on OCR (scans mechanically or electronically
printed pages)

-oicr Turns on ICR (scans handwritten text)

-obarcode Turns on barcode recognition

The other OCR/recognition-related options listed below are applicable only when
the -o flag is set.

-ocrmode
[<mode>]

This setting determines the balance between speed and accuracy used by the OCR
engine.

<mode>

can be realtime, fast, accurate, or superaccurate. The default setting is fast. As a
rule the slower the OCR, the more accurate it will be. In order of speed realtime is
the fastest, followed by fast,accurate, and superaccurate.

-oraster Forces the OCR engine to analyze the entire page as a single image, even if the input
page is a PDF with multiple image streams.

-ocrwordconf <val> Sets the minimum confidence level for OCR text that is recognized.

<val>

should be an integer from 0 to 100, representing a confidence percentage. Any text that
has a confidence level below

<val>

will be discarded.

-ocrtwod Enable two-dimensional (multidirectional) OCR. This allows the OCR engine to
recognize text in multiple orientations within the same image. Note that two-
dimensional OCR does not work with

-ocrzone

.

35

PdfCompressor 6.0 SDK

Option/Flag Description

-ocrdict <file> Use the custom OCR dictionary specified by

<file>

.

-ocrzone <file> Use the OCR Zone file specified by

<file>

.

-dsoff -dsoff disables checking for document skew (alternate document orientations),
which is on by default. It is recommended to include this flag if you know that none
of your pages are rotated.

-lang <language> Specifies the language dictionary to use with the OCR engine. Using a dictionary that
is native to the language of the document can greatly improve OCR results. If this
flag is not included, the English language dictionary is used. More information on
obtaining and installing additional language dictionaries for CVista PdfCompressor,
as well as a list of <language> parameters supported, can be found online at:
http://www.cvisiontech.com/langpack_instructions.html

-lsize <var> Specifies that line-based OCR should be used instead of word-based OCR. Word-
based OCR can sometimes result in more accurate bounding boxes displayed
around search hits, but this can also slow down the OCR engine. In most cases, line-
based OCR is recommended. The <var> parameter specifies the maximum number
of words that should be grouped as a single line. The GUI uses -lsize 25 as the
default.

-ot <val> -ot <val> sets a threshold for how long you want to allow the OCR process to take on
each page. <val> is specified in seconds. 120 seconds is often a good value to use. If the
threshold is exceeded for a given page, that page will not contain OCR information.

36

http://www.cvisiontech.com/langpack_instructions.html

PdfCompressor 6.0 SDK

Option/Flag Description

-ocroutput
<format>

Outputs a file in the specified format along with every document compressed,
containing all of the OCR text from the document. Acceptable <format> options are
as follows:

<format> Format Extension

0 Text (ASCII) .txt

1 Excel 97/2000 .xls

2 HTML .htm

3 Open EBook 1.0 .opf

4 PowerPoint 97 (RTF) .rtf

5 Basic RTF .rtf

6 Word 2000 (RTF) .rtf

7 WordPad (RTF) .rtf

8 WordPerfect 8 .wpd

9 XML .xml

13 Publisher 98 (RTF) .rtf

15 Word 2000/XP .doc

16 Text (Unicode) .txt

17 XPS .xps

18 Searchable XPS .xps

37

PdfCompressor 6.0 SDK

Option/Flag Description

-omergeoutput
<val>

Specifies how to handle merging of auxiliary output files:

<val> Meaning

0 Save the auxiliary OCR output from each page to a separate file.

1 Merge the auxiliary output from all pages of a multipage file into a single file.

2 If the folder is being processed in merge mode, whereby all input files are merg
into a single PDF output file, this will similarly merge the auxiliary output from a
files into a single file. If the folder is not being processed in merge mode, this w
behave as if a value of 1 was passed, and auxiliary output will be merged on a p
file basis only.

The default behavior without any flags is to merge auxiliary output on a per-file
basis only.

38

PdfCompressor 6.0 SDK

General Image Processing Options

Option/Flag Description

-c {ON|OFF} Turns bitonal cleaning ON or OFF. Cleaning removes very small stray dots
that were clearly artifacts of the scanning process. By default, cleaning is
ON for perceptually lossless mode and OFF for lossless mode. If a file is
compressed in lossless mode, the image first undergoes the cleaning
process, and then the cleaned image is compressed in a lossless maner.

-v Turns bitonal despeckling on. More ambitious than regular cleaning, this
removes larger stray specks that are judged to be artifacts from
scanning or photocopying. This computerized judgment call is not
infallible, however, so the resultant document should be checked to
ensure that no portion of the actual image was lost in this process.

-hb <mode>
-hg <mode>
-hc <mode>

Attempts to smooth out jagged edges in a bitonal, greyscale, or color
image, respectively.

<mode>

is a value from 1 to 4. '1' is Smart Smoothing, which varies the level of
smoothing in different parts of the image. '2' will automatically pick a level
of aggressiveness based on the DPI of the image. '3' will use the less
aggressive smoothing, and '4' will use more aggressive smoothing.

-c2b <val>
-g2b <val>

Remaps color and greyscale images, respectively, to bitonal.

<val>

should be a value from 0 to 255 indicating the threshold level. The higher
the number, the darker the image will tend to be.

-c2g Remaps color images to greyscale.

-rscdpi <val>
-rsgdpi <val>
-rsbdpi <val>

Resamples color, greyscale, and bitonal images, respectively, to a given
DPI value specified by

<val>

, regardless of the original image resolution.

39

PdfCompressor 6.0 SDK

Option/Flag Description

-rscinterp <val>
-rsginterp <val>
-rsbinterp <val>

Specifies the interpolation method to use for color, greyscale, and
bitonal images. The <val> parameter can be one of the following:

nearestneighbor
bilinear
smartbicubic
bicubic

If no flags are specified, the default interpolation method is nearestneighbor
for bitonal images and smartbicubic for greyscale and color images.

-rscdwndpi <val>
-rsgdwndpi <val>
-rsbdwndpi <val>

Downsamples color, greyscale, and bitonal images, respectively, to a
given DPI value specified by

<val>

. Only images that originally had a higher DPI than

<val>

will be resampled.

-rscupdpi <val>
-rsgupdpi <val>
-rsbupdpi <val>

Upsamples color, greyscale, and bitonal images, respectively, to a given
DPI value specified by

<val>

. Only images that originally had a lower DPI than

<val>

will be resampled.

-rsc <val>
-rsg <val>
-rsb <val>

Resamples color, greyscale, and bitonal images, respectively, by a given
percentage specified by

<val>

. This should be a floating-point number, using a period (".") as a decimal
separator.

40

PdfCompressor 6.0 SDK

Annotations, Document Tags, and Viewer Preferences

Some features of PdfCompressor, particularly those pertaining to annotations and document properties,
require the specification of several parameters. Due to this fact, a configuration file is used for specifying
many of these new options instead of passing parameters directly on the command line. The
configuration file itself is passed to PDFCompress.exe as one of the command-line flags in the
compression options. The syntax is as follows.

Option/Flag Description

-config

<filename>

Specifies the name of a config file that contains settings for some of the
features of PdfCompressor with more extensive sets of parameters. This
file can include information about stamps, watermarks, text annotations,
document properties, viewer preferences, and batch auditing. The

<filename>

parameter should be the full path to the file. The config file is described in
greater detail in Appendix B.

Security Options

Option/Flag Description

-ownerpw <passwd>

-userpw <passwd>

If an input file is password-protected, one or both of these flags are
required to gain access to the file in order to compress it. -ownerpw
specifies the owner password, and -userpw specifies the user
password.

Note, however, that the output file will NOT be password-protected
unless you re-encrypt using the -encrypt flag, described below.

41

PdfCompressor 6.0 SDK

Option/Flag Description

-encrypt <rev> <npw>
<opasswd>
[<upasswd>] <flags>

Encrypts the output file.

<rev> is the revision number of the encryption model. If this is set to 2, 40-
bit encryption is used. If it is set to 3, 128-bit encryption is used.

<npw> indicates the number of passwords to use. This should be set to 1
or 2. This parameter should then be followed by either one or two
passwords. <opasswd> is the owner password, which is always required
and allows for the changing of permissions. <upasswd>, if specified,
indicated the password needed by a user to open the document.

<flags> is a bitwise OR of various permissions flags. Note that the bit
positions of these flags are NOT exactly the same as in the Adobe PDF
Specification. The mapping of these bits to those in the Adobe PDF
Specification is as follows:

CVISION
bit pos (val)

Adobe
bit pos Meaning

1 (1) 3 ALLOW_PRINT

2 (2) 4 MODIFY_CONTENTS

3 (4) 5 COPY_EXTRACT

4 (8) 6 ADD_MODIFY

5 (16) 7 FILL_FORMS

6 (32) 10 EXTRACT

7 (64) 11 ASSEMBLE

8 (128) 12 PRINT_HIGHRES
So, for example, to enable COPY_EXTRACT and FILL_FORMS, you
would specify a value of (4 | 16) = 20.

See the Adobe PDF Specification for further description of the meaning of
each of these flags.

42

PdfCompressor 6.0 SDK

Logging Options

Some of the logging options are described below. Also see “Configuration File Overview” in the
PdfCompressor User Guide for a description of how to set up an audit log, which is done through the
config file.

Option/Flag Description

-log <filename> Generates an error log for batch compression.

<filename>

should be the fully-qualified path to the error log file.

43

PdfCompressor 6.0 SDK

Decompression Flags
The following is the list of flags used to specify the various desired options for use with Open() functions
in the APICVistaPDFReader API. They are described below.

Option/Flag Description

-q Run in quiet mode (suppress verbose messages).
-tifcompcg <val> Sets the encoding options for output TIFF images.

val can be one of the following:

 Value Meaning

 raw Use raw RGB encoding.

 rawcmyk Use raw CMYK encoding.

 lzw Use LZW compression.

 lzwcmyk Use LZW CMYK compression.

 packbits Use packbits compression.

 packbitscmyk Use packbits CMYK compression.

 jpegrgb Use JPEG RGB compression.

 jpegcmyk Use JPEG CMYK compression.

 jpegycbcr Use JPEG YCbCr compression.

-tifcompbw <val> Sets the TIFF compression options for generating bitonal TIFF images.
val can be one of the following:

 Value Meaning

 raw Use raw encoding.

 lzw Use LZW compression.

 ccitt3 Use CCITT3 compression.

 ccitt4 Use CCITT4 compression.

 ccittrle Use CCITT-RLE compression.

44

PdfCompressor 6.0 SDK

Option/Flag Description

-pdfres <xres>
[<yres>]

If compressing PDF files in rasterization mode (i.e. the -stream flag is
NOT present), this flag manually sets the desired output resolution. If
this flag is not specified, the compression engine will attempt to
automatically determine the resolution from the input file (which is not
always a reliable procedure).
<xres> is a value specifying the horizontal resolution and <yres> is a value
specifying the vertical resolution. If <yres> is not specified explicity, it will
be assumed the same as <xres>.

-pdfbw
-pdfgray
-pdfcolor

In rasterized mode, using one these three flags forces the input PDF files
to be converted to a given colorspace (bitonal, greyscale, or color,
respectively) before compressing. At most, only one of these flags
should be specified. If none of these flags is specified, the software will
guess the colorspace of each page.

-kbg Used in conjunction with the -pdfbw flag in rasterized mode. Keeps the
background layer and dithers it separately from the foreground.

-quality <val> Sets the target quality of color and greyscale images when outputting to
either JPEG format or a JPEG-encoded TIFF format. <val> should be an
integer from 1 to 99. Note that this flag has no effect if using a non-
JPEG encoding.

-split When the output formats supports multipage files (as in TIFF or PDF),
this flag indicates that the output pages of a multipage file should be
split into individual files. Each file will contain the original base output
filename but with a numeric suffix indicating the page number. Other
formats that do not support multipage files will always follow this
convention.

NOTE: This flag is not part of the main decompressions flags and must
be included after the output file path in the command line call. This
flag is not available via the API .

45

PdfCompressor 6.0 SDK

46

	The PdfCompressor 6.0 Developer's SDK
	Overview
	64-Bit Support
	Compatibility Note
	Compiling and Linking in C++
	Compiling your application with the APICVistaPDFWriter (or APICVistaPDFWriterMP) API
	Compiling your application with the APICVistaPDFReader API

	The .NET Wrapper for the PdfCompressor API
	Distributing Applications Based on the PdfCompressor API
	Integrating a license mechanism into your application

	The APICVistaPDFWriter Class
	Background Information
	Class and Member Definitions
	.NET Implementation

	The APICVistaPDFWriterMP Class
	Overview
	Class and Member Definitions
	.NET Implementation

	The APICVistaPDFReader Class
	Background Information
	Helper Data Structures and Functions
	Class and Member Definitions
	 Initialization and access functions
	 PDF page control functions
	PDF file functions: saving/conversion
	Error functions
	.NET Implementation

	Compression Flags
	Compression-Related Options
	Output Options
	Document Structure Options
	PDF-to-PDF Processing Options
	OCR-Related Options
	General Image Processing Options
	Annotations, Document Tags, and Viewer Preferences
	Security Options
	Logging Options

	Decompression Flags

